
1
Every Business Is

a Software Business

While technology can change quickly, getting your people

to change takes a great deal longer. That is why the peo-

ple-intensive job of developing software has had essentially the

same problems for over 40 years. It is also why, unless you do

something, the situation won’t improve by itself. In fact, current

trends suggest that your future products will use more software

and be more complex than those of today. This means that more

of your people will work on software and that their work will be

harder to track and more difficult to manage. Unless you make

some changes in the way your software work is done, your cur-

rent problems will likely get much worse.

Regardless of the industry you are in, you almost certainly use

software in just about every part of the business. For example,

your software people develop and maintain the administrative

systems for payroll, billing, receivables, sales tracking, and cus-

tomer records. Software controls production, manages invento-

ries, directs warehousing, and runs the distribution systems that

operate your business. In service industries, your people build

1

94_HUMPHREY.ch01.qk 12/13/01 2:54 PM Page 1

software to analyze, optimize, model, and support your clients.

In product development, your engineers find that software is the

most economical and reliable way to implement almost any so-

phisticated function. Software is now a critical element of com-

puters, television sets, cell phones, and automobiles.

The quality of the software, its usability, and its timely devel-

opment are critical to just about everything businesses now do.

This means that, to manage your business, you must manage the

software parts of that business effectively. Many managers and

executives have struggled with the problem of managing soft-

ware and have essentially given up. Because nothing they have

tried seemed to work, they have concluded that they cannot

manage software work. A common reaction is to outsource or

subcontract the software work to somebody else. As many of the

examples in this book show, that is often the worst possible so-

lution. The performance of the subcontractors is generally no

better, and it is often much worse.

Software work is entirely manageable, but only if you know

how to manage it. The Software Engineering Institute (SEI) at

Carnegie Mellon University was established by the U.S.

Department of Defense in 1984 to work on the software prob-

lem. Its people have been addressing this problem ever since.

They have learned why software work is so troublesome and

what you can do about it. They have packaged their findings in

a family of methods that are designed to help businesses like

yours. This chapter summarizes the principles of this work, and

the rest of the book describes what you can do to apply these

principles to your organization.

THE PRINCIPLES OF SOFTWARE MANAGEMENT

To manage a software-intensive business, you must observe

three management principles.

2 EVERY BUSINESS IS A SOFTWARE BUSINESS

94_HUMPHREY.ch01.qk 12/13/01 2:54 PM Page 2

Principle Number One: Recognize That You Are in the
Software Business

Whether or not you know it, you are almost certainly in the soft-

ware business. If yours is like most businesses, software plays a

pivotal role in most of your operations. For example, software

schedule delays affect product delivery dates, and product deliv-

ery dates drive cost, revenue, and profit. Unless you can manage

revenue and profit, you cannot manage a business. If you do not

treat software as a critical part of your future, you cannot man-

age software, and then you might not even be able to manage

your business.

Principal Number Two: Quality Must Be the Top Priority

In software work, quality problems overwhelm everything else.

Quality is critical, and when quality is not managed, entire soft-

ware projects are unmanageable. There are known ways to man-

age software quality, but they require proper training and

disciplined engineering methods. The key need is for you to

make a commitment to quality. You must make software quality

the top priority.

Principal Number Three: Quality Software Is Developed by
Disciplined and Motivated People

You cannot run an effective software operation without disci-

plined and motivated people. Software development is intellec-

tual work, and undisciplined or unmotivated people cannot do

timely or predictable intellectual work. Your people must be per-

sonally committed to their work, and they must care about the

quality of the products they produce. Quality work is not done

by accident; it is done only by skilled and motivated people.

These are the basic principles for managing software work. While

they may seem obvious, they are not simple. As the examples in

THE PRINCIPLES OF SOFTWARE MANAGEMENT 3

94_HUMPHREY.ch01.qk 12/13/01 2:54 PM Page 3

the rest of this chapter show, if you fail to follow any one of these

principles, you cannot have a productive or effective software

operation.

WHY EVERY BUSINESS IS A SOFTWARE BUSINESS

A senior vice president of Citibank once told me that “we are a

software business masquerading as a bank.” He explained that

they could not run the bank without software. I see this situa-

tion in business after business: software is now a critical part of

running many businesses. Some executives recognize it, but

many others do not.

One example of the growth of software is in weapon systems.

Figure 1.1 shows the growth of software in military aircraft from

1960 to 2000. With the F-4 in 1960, software supported only

8% of the functions the pilot performed. With the F-16 in 1982,

this proportion had reached 45% and, with the newest F-22 in

2000, software controls 80% of everything the pilot does [1]. As

4 EVERY BUSINESS IS A SOFTWARE BUSINESS

P
er

ce
n

t
o

f
fu

n
ct

io
n

al
it

y
p

ro
vi

d
ed

by
 s

o
ft

w
ar

e

Year of introduction

0

10

20

30

40

50

60

70

80

1960 1970 1982 2000

Figure 1.1 Software functionality in military aircraft

94_HUMPHREY.ch01.qk 12/13/01 2:54 PM Page 4

one general said, “The only thing you can do with an F-22 that

does not require software is take a picture of it.” That, of course,

assumes that you are not using a digital camera.

The speed with which your people develop software can put

you ahead of or behind your competitors. Software problems

may have been frustrating in the past, but mismanaged software

can now be fatal to a business. If your people do not produce

quality software, testing times will be excessive, schedules will

slip, and revenue will drop. You could soon be in serious trou-

ble. The consequences of these problems are predictable.

1. If you extend schedules to make realistic customer com-

mitments, you lose business.

2. If you make competitive commitments, your software is

late and your customers are unhappy.

3. If you do this too often, you will be known as an unreli-

able supplier and have unhappy and disloyal customers.

4. If this condition continues for long, you will lose so many

customers that you could well go out of business.

Even Fortune 500 businesses can fail, and often very quickly.

In this fast-paced world, you rarely get a second chance—you

must do the job right the first time. There is no second prize and

no time to learn from mistakes. In fact, you rarely have time to

catch up. Then, if you are not competitive, the business conse-

quences will likely be severe.

WE’RE IN THE HARDWARE BUSINESS

IBM management did not understand the first principle of soft-

ware management: they were in the software business. The con-

sequences were severe. For many years, IBM thought of itself as a

WE’RE IN THE HARDWARE BUSINESS 5

94_HUMPHREY.ch01.qk 12/13/01 2:54 PM Page 5

hardware company. It had started manufacturing and selling

punched-card machines. It wasn’t until the 1960s that IBM got

into the computer business in a big way. Even then, IBM’s senior

management had grown up in the punched-card era and could

not see the potential of software. They viewed software as an ex-

pense and thought they could make money only with hardware.

In 1976, the IBM CEO recognized that the personal com-

puter (PC) business was important. He also found that engi-

neering had no PC products under development or even

planned. He pushed the development divisions for several years

but finally lost his patience. Then he set up a special PC project

that reported directly to him. He told this group to get a prod-

uct on the market within a year.

The PC engineering group was formed quickly, and the prod-

uct manager was told to break any IBM traditions that got in the

way. IBM had recently disbanded its centralized programming

group, and each hardware product team had software people of

its own. Since the PC group was newly formed, it had no soft-

ware resources and there was no centralized programming de-

partment from which to obtain help. The PC product manager

had to get his programming support from a young entrepreneur

named Bill Gates, who was just starting a company called

Microsoft.

IBM announced the PC about a year later, and it was an enor-

mous success. The company expanded production and extended

marketing throughout the world. As PC demand grew, they

added new models and enhanced performance and capacity. At

the same time, Microsoft was enhancing the PC software.

When the PC was introduced, IBM was the third most prof-

itable company in the world, and Microsoft was not even ranked

among the top industrial organizations. Within ten years, IBM

had the largest operating loss in history. Over the same period,

6 EVERY BUSINESS IS A SOFTWARE BUSINESS

94_HUMPHREY.ch01.qk 12/13/01 2:54 PM Page 6

Microsoft had grown spectacularly and had a market valuation

more than twice that of IBM. It took another ten years, a com-

plete change of management, and a downsizing of 200,000 em-

ployees for IBM to address the new software-intensive

marketplace.

MAINTAIN CONTROL OF PRODUCT UNIQUENESS

IBM forgot a key business tenet: identify and protect that ker-

nel that makes your products and services unique. Why did peo-

ple want a PC? They did not want simply to have a pretty box.

They wanted to do something, often something that no one had

imagined. The power of computers is their flexibility, and the

PC put this flexibility in the hands of the public. This flexibility

was due entirely to the software.

When IBM realized that ceding control over the PC software

to Microsoft was a mistake, it sank many millions into develop-

ing the OS/2 software system. OS/2 was an excellent system,

but it was too late. Microsoft was too far ahead and the PC soft-

ware business was moving too fast. IBM could not catch up.

IBM did not realize that the uniqueness of the PC product

was in what it could do, and what it could do was almost entirely

determined by the software. IBM got no software revenue from

the PCs it sold, and the hardware soon became a low-profit

commodity. The real tragedy is that IBM is no longer even a

major force in the PC hardware business. That is now a com-

modity business, and whoever controls the PC software controls

the PC business. Today, that is Microsoft, not IBM.

The Lesson of Principle Number One

With modern sophisticated products, the unique functions are in-

creasingly embodied in the software, and a product’s uniqueness

MAINTAIN CONTROL OF PRODUCT UNIQUENESS 7

94_HUMPHREY.ch01.qk 12/13/01 2:54 PM Page 7

is what makes it profitable. Therefore, if you do not recognize

that you are in the software business and do not own the soft-

ware in your products and services, you will lose control of your

product’s uniqueness. Then you will likely lose control of busi-

ness revenue and profit.

QUALITY IS MORE IMPORTANT THAN SCHEDULE

Ashton Tate did not appreciate software management principle

number two: that software quality must be the top priority.

Their experiences illustrate the dangers of this mistake. The

Ashton Tate business started in 1980 with the introduction of

the Dbase database management program. This program was

soon the market leader, and Ashton Tate was one of the software

industry’s big three. In 1987, Ashton Tate had sales of $215

million, only slightly behind Lotus at $283 million and

Microsoft at $260 million. The Dbase product accounted for

65% of Ashton Tate’s business.

When competitors started offering faster and easier-to-use

database products, Ashton Tate developed an enhanced version

called Dbase IV. In February 1988, it announced that Dbase IV

would ship in May. In May, it announced a delay of two months,

and in August it announced another two-month delay. In late

September, Ashton Tate announced that the new Dbase prod-

uct would ship by the end of October, when it was finally sent

off to customers.

Unfortunately, Dbase IV had so many defects that, after it

had been used for a few months, Ashton Tate had to withdraw

it. In September 1989, when I met with Ashton Tate’s CEO,

the engineers were still testing and fixing Dbase IV. When the

CEO asked for suggestions, I asked if he had any data on the

product’s quality problems. My suggestion was to look at these

defect data and identify the most troublesome of the system’s

8 EVERY BUSINESS IS A SOFTWARE BUSINESS

94_HUMPHREY.ch01.qk 12/13/01 2:54 PM Page 8

modules, or parts. Then they could focus on repairing the most

defective modules. Since software defects typically cluster in a

small percentage of the modules, Aston Tate’s engineers could

clean up most of the problems in about four months. However,

because the CEO was committed to ship Dbase IV in two

months, he did not follow my advice.

The Ashton Tate engineers continued testing Dbase IV, and

they kept finding and fixing more defects. They did not ship in

two months, and they were still testing and fixing problems a

year later. By February 1991, Dbase IV was still in beta test and

the CEO was replaced. Because of its quality problems, Ashton

Tate reported a $5.6 million quarterly loss. It was soon bought

by Borland. Ashton Tate, once the third largest company in the

software industry, no longer exists.

The root cause of this problem was poor quality management.

Ashton Tate had announced its Dbase IV product in February

1988 for delivery in May. The schedule kept slipping until fi-

nally, in October 1988, management said, “Ship it; we’ll fix it

later.” This converted a schedule problem into a quality disaster.

Instead of being late and inconveniencing their customers, they

were now betting the company. Sadly, they lost the bet.

The Lesson of Principle Number Two

Ashton Tate’s engineers and managers viewed software quality

as a testing problem. As described later in this book, there are

better ways to manage quality. However, these better ways all

start with you. If you do not insist on quality from the very be-

ginning, people will rush through their work, expecting some-

body else to fix it later. Testing is enormously expensive, often

taking half of the software development schedule. By using

proven quality methods, these costs can be cut by ten or more

times and schedules accelerated by many months or even years.

Teradyne, in just two years, saved $5.3 million. That is why

QUALITY IS MORE IMPORTANT THAN SCHEDULE 9

94_HUMPHREY.ch01.qk 12/13/01 2:54 PM Page 9

quality is important, and that is why you must make it the top

priority. Everybody else can defer quality problems, but you

must live with the consequences. Quality is an economic choice:

pay a little now or a fortune later.

Another important lesson from the Ashton Tate experience

concerns time-to-market. Most businesses quickly learn the im-

portance of getting a product into the market at the right time.

However, many make the assumption that time-to-market and

quality are mutually exclusive. If you must get to market quickly,

they reason, you will have to skimp on quality and ram products

out fast as you can. As the Ashton Tate experience shows, this

quick-and-dirty strategy is often slow and very expensive. To

truly accelerate development work and optimize time-to-market,

your people must do their jobs the right way the very first time.

This reduces testing time and minimizes rework. Accomplishing

this requires a corporate commitment to quality.

IN SOFTWARE, WHAT MUST HAPPEN OFTEN DOES NOT

The next example illustrates what can happen when managers

do not follow software principle number three: that quality soft-

ware is developed by disciplined and motivated people. I met

Larry, the vice president of engineering, when his group was de-

veloping a large integrated production control system. Software

delivery was committed for the following September, and it was

only April, so Larry was optimistic that they would make it. He

wanted my opinion.

When I asked about status, Larry explained that the coding

was almost finished and that integration and system testing were

under way. However, when I asked about product data, he did

not know what I meant. I told him that, to understand where

they stood, I had to know the size of the planned product, how

much code had been written to date, how much had been re-

10 EVERY BUSINESS IS A SOFTWARE BUSINESS

94_HUMPHREY.ch01.qk 12/13/01 2:54 PM Page 10

leased to integration and system test, and when it was released.

He did not have this information.

Before giving Larry my opinion, I talked to the key managers

and several of the engineers on the project. I also talked to the

testers. Then I told Larry my conclusions. The system was just

now starting testing and, based on the quality practices I had

observed, the job was only about half done. Since the company

had been developing this system for over a year, there was at

least a year to go. While the product might be shipped in

September, it would be in September of the following year.

Larry refused to believe me. They had to ship this September.

While it was true that the business desperately needed an earlier

shipment, they didn’t even ship a year later. The company even-

tually ran out of money and was sold to a competitor. This is a

classic case of poor software management.

The Lesson of Principle Number Three

Software managers and professionals who are not trained in

quality methods will not believe that quality is important and

will not follow the disciplined practices required to build quality

products. Then testing will take at least half of the development

schedule. Until you overcome this poor quality attitude, your

people will not follow disciplined quality practices, and you can-

not get quality software. Every aspect of software must start

with quality, even the engineers’ attitudes.

A QUALITY COMMITMENT

While few people talk about quality, and while software projects

rarely have quality goals, most people would agree, “Of course,

we must produce a quality product.” Quality work is not an ac-

cident. People must believe that quality is important, and they

must strive to produce quality products. Quality is like any other

A QUALITY COMMITMENT 11

94_HUMPHREY.ch01.qk 12/13/01 2:54 PM Page 11

part of your business: if you don’t measure it, you can’t manage

it, and if you don’t manage it; it will not improve. Software qual-

ity can be measured, but until engineers measure and manage the

quality of their work, the quality of their work will not improve.

No other modern technology rushes products through design

and implementation and fixes them in test. Semiconductor en-

gineers know that quality is critical. They cannot test and fix

chips at the end of the line. When Toyota embraced the quality

teachings of Dr. W. E. Deming, they demonstrated to Detroit

that by managing quality, they could produce better cars and

save money [2]. Finding and fixing problems in test is expensive

for semiconductors, for automobiles, and for software.

Why don’t software engineers focus on quality? It’s not because

they are lazy or unmotivated, but because of the way they have

been trained and managed. Starting with their first programming

courses, engineers learn that the most admired programmers pro-

duce code at lightning speed. Then they find and fix the defects

in test. This fix-it-later attitude fosters poor practices throughout

the software process. There are no quality standards, design stan-

dards, or even much in the way of implementation standards. To

get quality work, you must change this culture.

If all engineers are poorly trained and if they all do undisci-

plined work, what can you do? Since you can’t afford unpre-

dictable schedules and poor-quality products, you must make

changes in the way software is developed. The key questions are

the following:

• Is there a better way to manage software?

• Is this better way economical?

• Is there a practical way to change organizations so they will

consistently follow sound and high-quality engineering

methods?

12 EVERY BUSINESS IS A SOFTWARE BUSINESS

94_HUMPHREY.ch01.qk 12/13/01 2:54 PM Page 12

The answers are yes, yes, and yes. In the rest of this book I

discuss ways to introduce effective software quality and manage-

ment practices. The methods I describe—the Personal Software

Process (PSP) and the Team Software Process (TSP)SM—are also

attractive financially. As shown in Chapter 8 and Appendix F, an

investment in these methods will yield a return of over 300%.

Finally, a defined and available introduction program is available

to help you and your people adopt these methods.

SUMMARY AND CONCLUSIONS

The following five principal points are made in this chapter:

1. Software is increasingly important to your business. If you

can’t effectively manage your software work, you will have

trouble managing anything else.

2. The first principle of software management is to recognize

that you are in the software business and to treat software

management as critical.

3. The second principle of software management is that qual-

ity comes first, even before the schedule.

4. The third principle of software management is that, to

consistently produce quality software, you must have disci-

plined and motivated professional teams.

5. There are known ways to manage software, but you must

know them and you must use them. This book explains

these methods, how to introduce them, and how to use

them.

SUMMARY AND CONCLUSIONS 13

SM Personal Software Process, PSP, Team Software Process, and TSP are service

marks of Carnegie Mellon University.

94_HUMPHREY.ch01.qk 12/13/01 2:54 PM Page 13

Although sound software practices are not difficult, they are

not obvious. The PSP and TSP provide an overall framework to

guide engineers, managers, and executives through building and

running an effective and productive software business.

REFERENCES

1. Jack Ferguson. “Crouching Dragon, Hidden Software: Software in DoD

Weapon Systems.” IEEE Software (July/August 2001), pp. 105–107.

2. W. Edwards Deming, Out of the Crisis. Cambridge, MA: MIT Center

for Advanced Engineering Study, 1982.

14 EVERY BUSINESS IS A SOFTWARE BUSINESS

94_HUMPHREY.ch01.qk 12/13/01 2:54 PM Page 14

